Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.
نویسندگان
چکیده
We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.
منابع مشابه
MEMS-based Implantable Drug Delivery System
Implantable devices are currently used regularly for chronic pain relief, cardiac pacemakers, arterial infusion for cancer and insulin delivery. A MEMS based implantable drug delivery system (IDDS) integrating a subcutaneous reservoir, an in plane silicon pump and associated circuitry for local or centralized delivery of therapeutic agents for chemotherapy is proposed. System configurations, fl...
متن کاملAn Implantable Cardiovascular Pressure Monitoring System with On-chip Antenna and RF Energy Harvesting
An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF) power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic syst...
متن کاملA Mems Micropump System with One-way Valve for Chronic Drug Delivery
Implantable micropump systems capable of user-controlled and site-specific chronic drug delivery in small animals are a critical unmet need in drug discovery and development. Our electrochemical bellows actuator provides current-controlled flow rate and is integrated to form a fully implantable system with a refillable reservoir and one-way valve that prevents mixing of biological fluids with t...
متن کاملIntra-Chip Wireless Interconnect for Clock Distribution Implemented With Integrated Antennas, Receivers, and Transmitters
A wireless interconnect system which transmits and receives RF signals across a chip using integrated antennas, receivers, and transmitters is proposed and demonstrated. The transmitter consists of a voltage-controlled oscillator, an output amplifier, and an antenna, while the receiver consists of an antenna, a low-noise amplifier, a frequency divider, and buffers. Using a 0.18m CMOS technology...
متن کاملA New Method based on Intelligent Water Drops for Multicast Routing in Wireless Mesh Networks
In recent years a new type of wireless networks named wireless mesh networks has drawn the attention of researchers. In order to increase the capacity of mesh network, nodes are equipped with multiple radios tuned on multiple channels emerging multi radio multi channel wireless mesh networks. Therefore, the main challenge of these networks is how to properly assign the channels to the radios. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2015